1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
| import torch from torch import nn from torchsummary import summary
class VGG16(nn.Module): def __init__(self): super(VGG16, self).__init__() self.block1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.block2 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.block3 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.block4 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.block5 = nn.Sequential( nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) )
self.block6 = nn.Sequential( nn.Flatten(), nn.Linear(7*7*512, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 10) ) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0)
def forward(self, x): x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.block5(x) x = self.block6(x) return x if __name__ == "__main__": device_choose = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = VGG16().to(device=device_choose)
print(model)
|