1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
| import copy import time import torch import torch.optim from torchvision.datasets import FashionMNIST from torchvision import transforms from torch.utils.data import DataLoader, random_split import matplotlib.pyplot as plt import pandas as pd from model import LeNet
def train_val_data_process(): transform= transforms.Compose([transforms.ToTensor(), transforms.Resize((28,28)), transforms.Normalize([0.286],[0.353])])
train_data = FashionMNIST(root="LetNet5\data", train=True, transform=transform, download=True) train_data,val_data = random_split(train_data,[round(0.8*len(train_data)),round(0.2*len(train_data))]) train_loader = DataLoader(dataset=train_data,batch_size=32,shuffle=True,num_workers=8) val_loader = DataLoader(dataset=val_data,batch_size=32,shuffle=True,num_workers=8)
return train_loader,val_loader
train_loader,val_loader = train_val_data_process()
def train_model_process(model,train_loader,val_loader,num_epochs):
device_choose = torch.device("cuda" if torch.cuda.is_available() else "cpu")
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)
model = model.to(device_choose)
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
train_loss_all,train_acc_all = [],[]
val_loss_all,val_acc_all = [],[]
since = time.time()
for epoch in range(num_epochs):
time_start = time.time() print("Epoch {}/{}".format(epoch, num_epochs-1)) print("-"*10)
train_loss,train_corrects = 0.0,0.0
val_loss,val_corrects = 0.0,0.0
train_num,val_num = 0,0
for train_data in train_loader:
img_tensor, target = train_data
img_tensor = img_tensor.to(device_choose) target = target.to(device_choose)
model.train()
output = model(img_tensor)
pre_lab = torch.argmax(output,dim=1)
loss = criterion(output,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item() * img_tensor.size(0) train_corrects += torch.sum(pre_lab == target.data)
train_num += img_tensor.size(0) for val_data in val_loader:
img_tensor, target = val_data
img_tensor = img_tensor.to(device_choose) target = target.to(device_choose)
model.eval()
output = model(img_tensor)
pre_lab = torch.argmax(output,dim=1)
loss = criterion(output,target)
val_loss += loss.item() * img_tensor.size(0)
val_corrects += torch.sum(pre_lab == target.data)
val_num += img_tensor.size(0) train_loss_all.append(train_loss / train_num) train_acc_all.append(train_corrects / train_num)
val_loss_all.append(val_loss / val_num) val_acc_all.append(val_corrects / val_num)
print(f"{epoch + 1}轮训练 损失值Train loss:{train_loss_all[-1]:.2f}, 精确值Acc:{train_acc_all[-1]:.2f}") print(f"{epoch + 1}轮测试 损失值val loss:{val_loss_all[-1]:.2f}, 精确值Acc:{val_acc_all[-1]:.2f}")
if val_acc_all[-1] > best_acc: best_acc = val_acc_all[-1] best_model_wts = copy.deepcopy(model.state_dict())
time_end = time.time()-time_start print(f"当前轮次训练耗费的时间:{time_end // 60}m{time_end % 60:.2f}s") time_use = time.time() - since print(f"训练耗费的时间:{time_use // 60}m{time_use % 60:.2f}s") model.state_dict(best_model_wts) torch.save(model.state_dict(best_model_wts),"LetNet5/best_model.pth")
train_process = pd.DataFrame(data={"epoch":range(num_epochs), "train_loss_all":train_loss_all, "val_loss_all":val_loss_all, "train_acc_all":train_acc_all, "val_acc_all":val_acc_all,}) return train_process
def matplot_acc_loss(train_process): plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(train_process['epoch'], train_process.train_loss_all, "ro-", label="Train loss") plt.plot(train_process['epoch'], train_process.val_loss_all, "bs-", label="Val loss") plt.legend() plt.xlabel("epoch") plt.ylabel("Loss") plt.subplot(1, 2, 2) plt.plot(train_process['epoch'], train_process.train_acc_all, "ro-", label="Train acc") plt.plot(train_process['epoch'], train_process.val_acc_all, "bs-", label="Val acc") plt.xlabel("epoch") plt.ylabel("acc") plt.legend() plt.show()
if __name__ == '__main__': LeNet = LeNet() print("-"*50) print("模型加载成功") print("-"*50) train_data, val_data = train_val_data_process() print("-"*50) print("数据集加载完成") print("-"*50) print("模型开始训练") train_process = train_model_process(LeNet, train_data, val_data, num_epochs=3) print("-"*50) print("模型训练完成") print("-"*50) matplot_acc_loss(train_process)
|